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Abstract. Quantum effects of matter fields on a classical curved back-

ground may lead to the phenomenologically interesting contributions to the

action of gravity. The present day knowledge of quantum field theory in curved

space leaves the most interesting corrections to the cosmological constant and

Einstein-Hilbert terms beyond our possibilities. In this situation one can use

phenomenological approach. In the cosmological setting the form of quantum

contributions can be established from the covariance arguments. In case of

astrophysical applications we meet a bit more complicated situation, and the

most challenging problem is to find an appropriate physical identification for

the scale parameter of the renormalization group. A very natural choice of

this identification provides a remarkably good fit for the rotation curves of a

relevant sample of spiral galaxies, without invoking the CDM concept.

The existence of singularities in General Relativity (GR) indicates that our most suc-

cessful theory of gravity has restricted area of applications. The most natural origin of

modifications of GR is the quantum theory, because in the vicinity of singularities one can

approach the Planck scale. However, the theoretical realization of the idea of “quantum

gravity” is not unique, because the deviations from the gravitational Einstein equations

can be either due to the semiclassical corrections, effects of (different models of) quantum

gravity, string theory physics, extra dimensions etc.

The corrections to the Newton law is a relatively common feature of the different

models of “quantum gravity”, including semiclassical approach (see [1] for the introduction

and [2] for a recent review). The application of these corrections has been elaborated

recently in the cosmological [3] and astrophysical [4, 5] areas.

Let us emphasize that in the most cases the present day state of art in all mentioned

approaches to quantum gravity does not enable one to really calculate the relevant quan-

tum contributions to the Newton law in a unique and consistent way. The theoretical

estimate for the quantum contribution to the gravitational law involves certain arbitrari-

ness, which can be parametrized by the renormalization group parameter µ from one side,
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and to the physical interpretation of this parameter from the other side. In the present

contribution we will summarize the possible effect of the quantum terms, mainly at the

astrophysical scale [5].

The standard way of discussing quantum effects in gravity is based on the notion of

Effective Action of vacuum (EA). The EA is a generalization of the classical gravitational

action at quantum level, which can be seen as a classical action plus quantum contri-

butions. The finite part of EA is a non-local functional, which can not be calculated

explicitly, except for the simplest cases [2]. However, in other cases one can use some

general features of EA to establish a possible form of low-energy quantum effects at the

cosmological and astrophysical scales. Our assumptions include the covariance of EA,

and that the low-energy gravity should not have other light degrees of freedom except the

ones of the metric.

Under the conditions formulated above, the quantum contributions can be taken in

form of a power series in the derivatives of the metric. In the cosmological setting, the

second order in derivatives term means there are only the O(H2) - like contributions,

because the linear in H terms are non-covariant [2, 3]. Then, in the cosmological case,

the quantum corrected vacuum energy density ρΛ = Λ/(8πG) and the Newton constant

satisfy the equations [4]

ρΛ = C0 +
3ν

4π
M2

P H2 , ν =
σ

12 π

M2

M2
P

(1)

(ρ + ρΛ) dG + GdρΛ = 0 , ρ + ρΛ =
3H2

8 π G
,

where ρ is the energy density of matter, µ = H and ν is some undefined parameter

dependent on the unknown quantum corrections, mainly coming from the particles of the

typical mass M . The solution for G = G(H; ν) can be easily found to be

G(H; ν) =
G0

1 + ν ln (H2/H2
0 )

, (2)

where G(H0) = G0 ≡ 1/M2
P is the initial value of G.

The formula (2) can be understood beyond the cosmological setting. Indeed, the

quantum contributions are assumed to come from the Feynman diagrams which have

external legs of a background metric. The relation (2) means we can expect similar

relation in the general case, where the Hubble parameter will be replaced by some, yet

unknown, combination of the metric components and their derivatives. In this way we

arrive at the general relation

G(µ) =
G0

1 + ν ln (µ2/µ2
0)

. (3)
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One can obtain the same formula (3) starting from other arguments. Consider the

simplest MS-based renormalization group equation for G(µ)

µ
dG−1

dµ
=

∑

particles

Aij mi mj = 2ν M2
P , G−1(µ0) = G−1

0 = M2
P . (4)

Here the coefficients Aij depend on the coupling constants, mi are masses of all particles

of the theory. In particular, at one loop,

∑

particles

Aij mi mj =
∑

fermions

m2
f

3(4π)2
−

∑

scalars

m2
s

(4π)2

(
ξs − 1

6

)
.

It is an easy exercize to rewrite (4) as d(G/G0)
d log µ

= −2ν(G/G0)
2 and eventually arrive at

(3). These consideration shows that, in fact, (3) is not a one-loop, but an exact form of the

possible relevant renormalization group equation for the Newton constant. Furthermore,

we note that the conservation law says that the Appelquist and Carazzone-like decoupling

for ρΛ(µ) implies a non-decoupling of G(µ).

An interesting possibility is to apply (3) for description of the rotation curves of the

galaxies. Therefore we need the phenomenologically sound choice for µ in the correspond-

ing setting. Different from the previous papers on the subject [6, 4, 7] we consider an

identification [5]

µ

µ0

=

(
ΦNewt

Φ0

)α

, (5)

where Φ0 and α are phenomenological parameters and ΦNewt is the Newtonian potential

computed with the zero boundary condition at infinity. It is important to have α growing

fast with the mass of the cosmic object, such that the quantum corrections could become

irrelevent within the Solar system.

The result of the application of the Eqs. (3) and (5) can be seen in Fig. 1. As we can

see from Fig. 1 and from other plots in [5], the application of the quantum corrections to

the galaxies is rather successful. One can see this result as an indication to the possible

important impact of quantum (or semiclassical) effects at the cosmic scale.
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Figure 1: Rotation curve (RC) fits to NGC 2403 (observational data from [8]). The

plot on the left shows the resulting RC from our model based on renormalization group

corrections, while the one of the right uses one of the standards dark matter profiles. The

red dots with error bars are the RC observational data. The solid black line for each model

is its best fit RC. The yellow lines stand for RCs decomposition for the stellar part (bulge

and disk), the purple line for the gas part and the green for the resulting contribution of

the last two parts. See [5] for further details, including other galaxies and comparisons to

other models [9].
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